On Discretizing Uniform Norms of Exponential Sums

نویسندگان

چکیده

Abstract In this paper, we consider the uniform norm discretization problem for general real multivariate exponential sums $$p({{\mathbf{w}}})=\sum _{0\le j\le n}c_je^{\langle \mu _j, {{\mathbf{w}}}\rangle }, \;\;\mu {{\mathbf{w}}}\in \mathbb {R}^d$$ p ( w ) = ∑ 0 ≤ j n c e ⟨ μ , ⟩ ∈ R d . Given arbitrary $$0<\tau \le 1$$ < τ 1 consists in finding discrete point sets $$ {{\mathbf{w}}}_j\in K, 1\le N$$ K N compact domain $$K\subset {R}^d, d\ge ⊂ ≥ so that every $$p({{\mathbf{w}}})$$ as above have $$\begin{aligned} \max _{{{\mathbf{w}}}\in K}|p({{\mathbf{w}}})|\le (1+\tau )\max _{1\le N}|p({{\mathbf{w}}}_j)|. \end{aligned}$$ max | + . Using certain new Bernstein–Markov type inequalities it will be verified convex polytopes and polyhedral cones K $$\mathbb there exist meshes $${{\mathbf{w}}}_1,\ldots ,{{\mathbf{w}}}_N\subset K$$ … of cardinality N\le c\left( \frac{n}{\sqrt{\tau }}\right) ^{d}\ln ^{d}\frac{\mu _n^*}{\delta \tau \;\;\;\mu _n^*:=\max n}|\mu _j| ln ∗ δ : which inequality holds any sum p with exponents satisfying separation condition $$|\mu _{k}-\mu _j|\ge \delta , j\ne k, >0$$ k - ≠ > addition, optimality estimates also discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on direct sums of baer modules

the notion of baer modules was defined recently

Exponential Sums on A

Let d = degree of f and write f = f (d) + f (d−1) + · · ·+ f , where f (j) is homogeneous of degree j. A by now classical theorem of Deligne[2, Théorème 8.4] says that if (p, d) = 1 and f (d) = 0 defines a smooth hypersurface in P, then L(A, f ; t) n+1 is a polynomial of degree (d − 1), all of whose reciprocal roots have absolute value equal to q. This implies the estimate |S(A(Fqi), f)| ≤ (d− ...

متن کامل

Exponential Sums On

where f (j) is homogeneous of degree j. Theorem 1.4. Suppose (p, δ) = 1 and f (δ) = 0 defines a smooth hypersurface in P. Then L(A, f ; t) n+1 is a polynomial of degree (δ − 1), all of whose reciprocal roots have absolute value q. For exponential sums on A, several generalizations of Deligne’s result have been proved ([1, 2, 5, 7]). In all these theorems, the hypothesis implies that f , regarde...

متن کامل

On Tractable Exponential Sums

We consider the problem of evaluating certain exponential sums. These sums take the form ∑ x1,x2,...,xn∈ZN e 2πi N 12n, where each xi is summed over a ring ZN , and f(x1, x2, . . . , xn) is a multivariate polynomial with integer coefficients. We show that the sum can be evaluated in polynomial time in n and logN when f is a quadratic polynomial. This is true even when the factorization of N is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Constructive Approximation

سال: 2022

ISSN: ['0176-4276', '1432-0940']

DOI: https://doi.org/10.1007/s00365-022-09565-6